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Fig.1 Simulated oscillatory Y-axis rate.

Fig.2 Effect on X-axis gyro of oscillatory rate about Y-axis.

about a cross axis and at a frequency corresponding to the
Larmor frequency, a periodic loss of magnetometer output
results. This was demonstrated with a digital simulation of the
3He gyro dynamics. The particular case demonstrated was an
X-axis gyro in response to an oscillating rate about the Y axis.
The cross-axis rate input (Fig. 1) is described by

wy =0.05vBsgn [cosyBt] 6)

The resulting path of the magnetization vector, as seen in the
gyro frame, is shown to wind its way up the gyro X axis (Fig.
2). The magnitude of M is unchanged since relaxation effects
are ignored, but if the oscillatory input persists, M winds back
down into the X =0 plane and then continues its way down the
— X axis and back and forth. Since the magnetometer senses
the component of M orthogonal to B the effect is to alter-
nately diminish and restore the magnetometer signal. Overall
then, the signal-to-noise ratio of the instrument is decreased.
In this demonstration time has been scaled in terms of yB. For
example, if yB is shosen to be 2« rad/s, then wy has a peak
rate of 0.31 rad/s and the total time shown (Fig. 2) is about
7.5 s. In other words, if the peak input rate is 5% of the

Larmor rate, it will take about 7.5 Larmor periods for M to

wind its way out of the X' =0 plane.
The situation is most easily explained in a rotating frame.
For example, approximate wy as

wy =0.05vBcosyBt @

Then represent wy as two counter-rotating vectors in the X=0
plane, each of magnitude 0.25 yB, starting in the Y-axis
direction and rotating at yB rad/s. Then, in the rotating
frame, the vector traveling with the rotating frame is
stationary, while the other appears to rotate at twice the
Larmor rate. The effects of the latter average to zero, but the
former causes M to precess about the rotating frame Y axis.
In the gyro frame both the Y axis motion and the Larmor
precession about the X axis cause the spiral trajectory shown.
This situation is a worst-case situation. For oscillatory rates
much higher or lower than yB, the effect averages to zero.
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Conclusions

Cross-axis rates, oscillating at the Larmor frequency, will
cause a degradation in the signal-to-noise ratio of nuclear
magnetic resonance gyros. This has been demonstrated for a
single-species, unpumped device but should cause related
problems in the dual-species, continuously pumped devices as
well. Care must be taken with such instruments to isolate
them from vibrations at the Larmor frequency.
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An Exact Expression for Computing
the Degree of Controllability

W.E. Schmitendorf*
Northwestern University, Evanston, Illinois

Introduction

HE concept of degree of controllability was recently

introduced to study control systems associated with large
flexible spacecraft.> However, a formula for the exact value
of the degree of controllability was not determined; instead
various techniques for computing an estimate were developed
in Refs. 1-5. Here we give an exact formula which can be used
to compute the degree of controllability.

In the next section, we review the concepts and results
associated with the idea of degree of controllabiltiy and then
derive the above mentioned result. In a subsequent section,
this result is used to compute the degree of controllability for
several of the examples in Refs. 1-5.
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Some Controllability Concepts and Results
Considera linear time-invariant system

#(t) =Ax(t) +Bu(t), te[0,00) S
where x(f)eR" is the state and u(#)eR™ is the control havmg
components u#; () which are required to be measurable and
are restricted to lie in a prespecified constraint set Q given by

Q={u: lul<l, i=1,2,...m} ®

Let M (9) denote the set of functions from R into Q that are -

measurable on [0,00). If u(-)eM(Q), then u(:) is termed
admissible. Given an initial state x, and an admissible control
u(-), we denote the correspondmg solution of Eq 1) by
x(Lxg,u(+)).

Definition 1. The system [Eq. (1)] is Q—null controllable
from x, at time 7=0 if there exists an admlssxble control such
thatx(Txo,u( ))=0.

Defmztton 2 The recovery reglon at time T'is the set

R(T)—{xoeR". x(Txo,u( )) Oforsomeu( YeM(£2)}

- Definition 3. The degree of controllability in tlme T is
defined as

pm éinf{ Ix(0)I: x(0)eR°(T)}

where R¢ (T) is the complement of R(T).. ,

The recovery region'is the set.of initial states which can be
steered to the origin at time T by an admissible control, and
the degree of controllability at T'is a measure of the size of the
* recovery region at T. In fact, p(T) is-the radius of the largest
ball, centered at the origin, that is contained in R(T).

To obtain an exact expression for the degree of con-
trollability p(T), we need the following theorem from Refs.

Theorem 1. The system [Eq. (1)] is system is Q-null
controllable from x, at T'if and only if

min [xoz0+S max(w'B Z(T))df]
_ lzgh=1

where z(*) is a solution of the adjoint system
Z'(t)=—A'Z(t); z(0)=20
We now present our main result.
Theorem 2. The degree of controllablhty intime T'is
" o(T)= min [S max(w',B'z('r))dT] @
) lizglh=1 0 weﬂ ’ . ) )
Proof. Given r>0, let B,(0)= [x};eR”’ llx, 1 érj Then,

from Theorem 1, every xoeB,(O) is Q-null controllafble at Tif
and only if for all xoeB,(O)

min [x,;zo+s max(w'B’z(T))d'r]EO
I!20||=I 0 we »

or, equivalently,
) - T ' :
inf min [x,;zo+S max(w’B’z('r))d'r]zo @
xpeB, (- . 0 . X
0 lzgl=1 ' wel?

In‘terchanging the order of inf and min and using the fact that

inf{xz,: XoeB, (0)} % alizyll=—r

'ENGINEERING NOTES ‘ 503

v;/e have from Eq. (4) that every x,¢eB,(0) is Q-null controllable
at Tif and only if

min [S max(w’B'z('r))dT]>r %)

IIzo =1 0 we

Sine the largest va'llue of r for which Eq. (5) holds is the degree
of controllablhty, the theorem is proved.

To compute the degree of controllabrhty, a finite-
dimensional optimization problem needs to be solved. For
simple problems, this can be done directly, For more com-
plicated systems, numerical tehcniques are needed. Since the

. computation involves only a finite-dimensional optimization

problem, the expression for p(7) is. particularly suitable for
numerical procedures. Note that the minimization in Eq. (3) is
over a- function -that may not be differentiable, and a
derivative-free algorithm must be used. ‘

Examples ’

In Ref. 3, three second order examples were - con-
sidered—the ‘harmonic oscillator, the damped harmonic
oscillator and the double integral plant. For each of the
examples, the exact degree of controllability can be deter-
mined analytically and the exact value was compared to the
value of p(7T) found using several approximation techniques.
To illustrate our technique, we consider'one of these examples
in detail and only present our results for theother two.

Example 1 (Harmonic Oscillator)

. The system equations are
X (1) =x; (1), X (8) = —Qx; () +u(t)

and the control must satisfy lu(¢) | <1. For this system, the
adJ oint equations are

GO=02,(0,  4(0=—0,()
and their solution is
z; (%) =z10cosﬁt+z20sinﬂt
Z,(2) =z§ocosﬂt—z10sin9t
Using Theorem 2,
. o
p(n = min || max (o2, (r)ar]

bzg =1

o T : -
= min S lZz(T)ldT“ min- S 1250€08Q7 — Z4¢sin | d 7
ﬂZo“:I Ilzoll— )

By using the constraint. z3, +z3,=1 to eliminate z,5, this
two-dimensional minimization . problem to determine p(7)
can be replaced with an equivalent one-dimensional problem. .
The resulting one-dimensional problem was solved on an
Apple 11+ by the ‘‘golden section search’’ technique as
described in Ref. 8. Our results for w=1 are shown in Fig. 1
and agree w1th those in Ref. 3.

Example2 (Damped Harmonic Osc1llator)
With damping present, the system equations become

x,<t>=—ax,<t>+"iﬂxz(t>
n;

) nQc. I
f2(0)= =" = -ax0 +2-u(n
2
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Fig. 1 Degree of controllability for Examples 1 and 2.

The same technique as used for Example 1 is used here and
our results are shown in Fig. 1 for n;=n,=w=1, a=%4.
Again, they agree with the results in Ref. 3.

- Example 3 (Double Integral Plant)

The equations for this system are

X1 () =X, (1), x;(8) =u(f)

with lu(f)l=1. The results are shown in Fig. 2 and are the
same as those in Ref. 3.
Example 4 (Magnetic Suspernision)

In the three previous examples, o (T, as a function of time,
increases without bound. In this example, p(T) approaches a
finite limit as T"becomes large. The system equations are

X (1) =x,(1), X (8) =x;(8) +u(t)

These equations describe a magnetic suspension system (see
Ref. 9 for details). The same numerical procedure as used in
Examples 1-3 was used on this problem and the results are
shown in Fig. 2. Note that for 7>6, p(T) is essentially
constant.

Example 5 (Simply Supported Beam)

. The most interesting example is that of Ref. 1 where the
authors consider a simply supported beam with actuators
placed at one-third and two-thirds the length of the beam.
There, the authors could not compute the exact degree of
controllability and only obtained the approximate values for
T=4,

The system is modeled by the equations

X (1) =2.47 x5 (t)

X, (8) =—2.47 x; (1) +0.866u, (¢) +0.866u, (1)

X5 (1) =9.87x,(1)

X, (1) = —9.87x; (£) +0.216u, (¢) —0.216u, (¢)

with control constraints lu; (£) | <1, lu, (1) | <1.
For this problem

p(T) = 01.:18 [|h1('r)|+|h2('r)|]d1'}

where
hy (1) =0.866(z0c0s 2.477—7,58in 2.477)
+0.216(z4pc0s 9.877—z3psin 9.877),
h () =0.866 (2,0c0s 2.477~Z,05in 2.477)

+0.216(z3,5in 9.877—z,4c0s 9.877)
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Fig.2 Degree of controllability for Examples 3, 4, and 5.

To solve this minimization problem, we used thé derivative-
free algorithm MINIMUM as described in Ref. 8. Our results
for the exact degree of controllability are shown in Fig. 2.

InRef.1a techmque to determine the approximate degree
of controllability is presented. In addition to only providing
approximate values of p(T), it involves discretization and is
more difficult to implement than the technique used here
based on the exact expression for p(7). Furthermore, the
accuracy of the approximate technique depends on the step
size used in discretizing the system, and an appropriate step
size may have to be determined by numerical ex-
perimentation.

Concluding Remarks

The degree of controllability is a measure of the size of the
set of initial states that can be steered to the region in a
prescribed time. An exact expression for the degree of con-
trollability has been obtained for a constant, linear system
when there are magnitude constraints on the control and the
target is the origin. Several examples were presented to
illustrate how this expression could be used to compute the
degree of controllability.
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